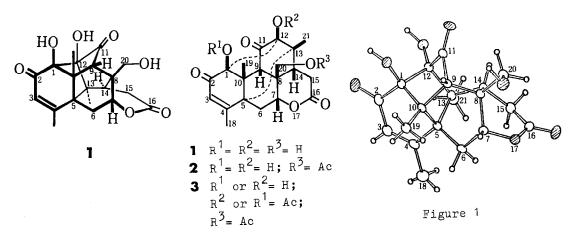
SHINJULACTONE C, A NEW QUASSINOID WITH A 1α , 12α : 5α , 13α -DICYCLO- 9β H-PICRASANE SKELETON FROM AILANTHUS ALTISSIMA SWINGLE

Masami Ishibashi, Tatsushi Murae, Hiroshi Hirota, Takahiko Tsuyuki,
Takeyoshi Takahashi, * Akiko Itai, * and Yoichi Iitaka*

Department of Chemistry, Faculty of Science, and *Faculty of Pharmaceutical
Sciences. The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Summary: A new non-bitter quassinoid, named shinjulactone C (1), was isolated from the root bark of <u>Ailanthus altissima</u> SWINGLE and shown to be 1α , 12α : 5α , 13α -dicyclo- 1β , 12β , 20-trihydroxy- $9\beta \underline{H}$ -picras-3-ene-2, 11, 16-trione by X-ray diffraction method.

Several investigations on bitter principles of Ailanthus altissima SWINGLE (= A. glandulosa DESF.) have been reported. 1) In previous papers 1b,c) we reported isolation of new bitter quassinoids, shinjudilactone and shinjulactone B, from this plant (Japanese name: Shinju) grown in Japan, together with seven known quassinoids. Further investigation on the constituents of the root bark of the plant led to the isolation of a new non-bitter quassinoid, shinjulactone C (1). This paper deals with the structure determination of 1.


The aqueous extract of the root bark was continuously extracted with ${\rm CH_2Cl_2}$ and the organic layer was evaporated and subjected to separation by ${\rm SiO_2}$ column chromatography. A fraction eluted with 16% ${\rm CH_3OH-CH_2Cl_2}$ was rechromatographed and crystallized from acetone to give shinjulactone C (1; ca. 0.001% yield), mp 292 $^{\rm OC}$ (decomp); ${\rm Ca}_{\rm D}^{23}$ -344 $^{\rm O}$ (C₅H₅N); IR (KBr) ca. 3480, 1775, 1720, and 1650 cm⁻¹; UV (MeOH) 248 nm (${\rm E}$ 10600); H and $^{\rm 13}{\rm C}$ NMR²; MS m/e (%) 374 (M⁺; 100), 356 (5), 343 (20), 315 (10), and 151 (60); Found: m/e 374.1379. Calcd for C₂₀H₂₂O₇: M, 374.1366.

On treatment with acetic anhydride in pyridine at room temperature for 20 hr, 1 gave a monoacetate (2) and a diacetate (3) in a ratio of 3:7. The monoacetate (2) showed mp 131-134 °C (acetone-hexane); $[\alpha]_D^{22}$ -222° (CHCl₃); IR (Nujol) ca. 3450, 1770, 1740, and 1660 cm⁻¹; UV (EtOH) 245 nm (ϵ 14000); ¹H NMR³; MS m/e (%) 416 (M⁺; 25), 398 (10), 388 (8), 374 (8), 356 (100), 193 (30), and 151 (10); Found: m/e 416.1464. Calcd for $C_{22}H_{24}O_8$: M, 416.1469. The diacetate (3) gave mp 152-154 °C (acetone-hexane); $[\alpha]_D^{21}$ -200° (CHCl₃); IR (Nujol) ca. 3450, 1780, 1740, and 1665 cm⁻¹; UV (EtOH) 245.5 nm (ϵ 9600); ¹H and ¹³C NMR⁴; MS m/e (%) 458 (M⁺; 12), 430 (10), 416 (100), 398 (20), 193 (60), and 151 (58); Found: m/e 458.1590. Calcd for $C_{24}H_{26}O_9$: M, 458.1587.

In order to determine the structure of shinjulactone C'(1), a single crystal of 1 was subjected to X-ray diffraction analysis. Crystals of 1 belong to an orthorhombic space group $P2_12_12_1$ with the cell parameters of $\underline{a}=13.247$, $\underline{b}=13.331$, and $\underline{c}=9.596$ Å, Z=4, and $\underline{D}_c=1.47$ g cm⁻³. The final R-factor was

0.073. Figure 1 is a computer-generated perspective drawing of the molecule of 1. Thus the structure of shinjulactone C (1) was shown to be formulated as $1\alpha,12\alpha:5\alpha,13\alpha-dicyclo-1\beta,12\beta,20-trihydroxy-9\beta\underline{H}-picras-3-ene-2,11,16-trione.$

The unusual hexacyclic 1α , 12α : 5α , 13α -dicyclo- $9\beta\underline{H}$ -picrasane skeleton is unprecedented and its biogenetic pathway is unknown. However, an inversion of a chiral center at the $C_{(9)}$ -position in common picrasanes must occur prior to the bond formation, and a participation of a double bond between $C_{(12)}$ and $C_{(13)}$ in ring C with ring A must be necessary to form the $C_{(1)}$ - $C_{(12)}$ and $C_{(5)}$ - $C_{(13)}$ linkages. The investigation in this direction is under way.

References and notes

- 1) a) J. Polonsky, Fortschr. Chem. Org. Naturst., 30, 101 (1973) and references cited therein; b) M. Ishibashi, T. Murae, H. Hirota, H. Naora, T. Tsuyuki, T. Takahashi, A. Itai, and Y. Iitaka, Chem. Lett., 1981, 1597; c) T. Furuno, H. Naora, T. Murae, H. Hirota, T. Tsuyuki, T. Takahashi, A. Itai, Y. Iitaka, and K. Matsushita, Chem. Lett., 1981, 1797.
- 2) 1 H NMR (90 MHz, $_{5}D_{5}N$) $_{5}$ 1.08 (3H, s), 1.28 (3H, s), 2.02 (3H, br s), 2.85 (1H, s), 4.03 (2H, s), 5.18 (1H, m), and 6.45 (1H, br s); 13 C NMR (22.5 MHz, $_{5}D_{5}N$) $_{5}$ 12.7 (q), 14.5 (q), 22.7 (q), 30.0 (t), 30.2 (t), 36.2 (d), 45.4 (s), 50.7 (s), 51.7 (d), 55.3 (s), 55.5 (s), 60.2 (t), 72.6 (d), 88.3 (s), 93.6 (s), 127.8 (d), 165.9 (s), 170.8 (s), 195.2 (s), and 209.8 (s).
- 3) ¹H NMR (90 MHz, CDCl₃) δ 0.99 (3H, s), 1.03 (3H, s), 2.08 (6H, s), 4.07 (2H, s), 4.63 (1H, m), and 6.35 (1H, br s).
- 4) 1 H NMR (90 MHz, CDCl₃) δ 0.99 (3H, s), 1.00 (3H, s), 2.06 (3H, s), 2.10 (3H, br s), 2.13 (3H, s), 4.10 (2H, s), 4.63 (1H, m), and 6.37 (1H, br s); 13 C NMR (22.5 MHz, $C_{5}D_{5}N$) δ 12.3 (q), 13.3 (q), 20.0 (q), 20.3 (q), 22.6 (q), 29.8 (t), 29.8 (t), 35.4 (d), 42.4 (s), 51.0 (s), 52.7 (d), 55.0 (s), 56.2 (s), 63.5 (t), 72.6 (d), 86.4 (s), 97.5 (s), 128.4 (d), 165.5 (s), 169.7 (s), 170.0 (s), 170.0 (s), 193.2 (s), and 201.0 (s).
- 5) Numbering of picrasane refers to the nomenclature described in the Chemical Abstracts.